Abstract

Level set–based optimization for two-dimensional structural configurations with thin members is presented. A structural domain with thin thickness is defined as a narrow band region on the zero-level contour of the level set function. No additional constraints or penalty functional is required to enforce semi-uniformity in member thickness. Design velocity is calculated on the zero level set, not on domain boundaries, and extended to level set grids in the narrow band. For complicated structural layouts, multiple level set functions are employed. The effectiveness of the proposed method is verified by solving optimization problems of bar configurations. Since no thickness constraints are employed, structurally unfavorable distorted joints seen in other literature do not appear in the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.