Abstract

BackgroundLytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave plant cell wall polysaccharides. LPMOs classified as fungal Auxiliary Activities family 9 (AA9) have been mainly studied for their activity towards cellulose; however, various members of this AA9 family have been also shown to oxidatively cleave hemicelluloses, in particularly xyloglucan (XG). So far, it has not been studied in detail how various AA9 LPMOs act in XG degradation, and in particular, how the mode-of-action relates to the structural configuration of these LPMOs.ResultsTwo Neurospora crassa (Nc) LPMOs were found to represent different mode-of-action towards XG. Interestingly, the configuration of active site segments of these LPMOs differed as well, with a shorter Segment 1 (−Seg1) and a longer Segment 2 (+Seg2) present in NcLPMO9C and the opposite for NcLPMO9M (+Seg1−Seg2). We confirmed that NcLPMO9C cleaved the non-reducing end of unbranched glucosyl residues within XG via the oxidation of the C4-carbon. In contrast, we found that the oxidative cleavage of the XG backbone by NcLPMO9M occurred next to both unbranched and substituted glucosyl residues. The latter are decorated with xylosyl, xylosyl–galactosyl and xylosyl–galactosyl–fucosyl units. The relationship between active site segments and the mode-of-action of these NcLPMOs was rationalized by a structure-based phylogenetic analysis of fungal AA9 LPMOs. LPMOs with a −Seg1+Seg2 configuration clustered together and appear to have a similar XG substitution-intolerant cleavage pattern. LPMOs with the +Seg1−Seg2 configuration also clustered together and are reported to display a XG substitution-tolerant cleavage pattern. A third cluster contained LPMOs with a −Seg1−Seg2 configuration and no oxidative XG activity.ConclusionsThe detailed characterization of XG degradation products released by LPMOs reveal a correlation between the configuration of active site segments and mode-of-action of LPMOs. In particular, oxidative XG-active LPMOs, which are tolerant and intolerant to XG substitutions are structurally and phylogenetically distinguished from XG-inactive LPMOs. This study contributes to a better understanding of the structure–function relationship of AA9 LPMOs.

Highlights

  • Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave plant cell wall polysaccharides

  • We first monitored the mode-of-action of two NcLPMOs on Tamarind seed xyloglucan (TXG) by profiling the molecular weight (MW) distribution of NcLPMO9M- and NcLPMO9C-TXGdigests during incubation using high-performance size exclusion chromatography coupled to a refractive index detector (HPSEC-RI) (Fig. 2; Additional file 1: Fig. S1)

  • The MW distribution of both NcLPMO-TXG-digests after 24 h incubation showed only little change in the absence of ascorbic acid (Asc) (Additional file 1: Fig. S1), which showed that these enzyme preparations were almost free of hydrolytic side activities

Read more

Summary

Introduction

Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave plant cell wall polysaccharides. LPMOs classified as fungal Auxiliary Activities family 9 (AA9) have been mainly studied for their activity towards cellulose; various members of this AA9 family have been shown to oxidatively cleave hemicelluloses, in xyloglucan (XG). It has not been studied in detail how various AA9 LPMOs act in XG degradation, and in particular, how the mode-of-action relates to the structural configuration of these LPMOs. For establishing sustainable processes and a circular economy, plant biomass is an essential source for the production of fuels and chemicals, in particular, to replace fossil-based resources [1]. We aimed to understand how LPMOs oxidatively cleave XG, and hypothesized that the mode-of-action of LPMOs towards XG correlates with their active site configuration

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call