Abstract
Shape adaptive systems and structural configurations are necessary to fulfill the demands of a future unmanned aerial vehicle structure. Predominantly the present approaches are based on a passive load-bearing structure having smart actuation systems deforming the passive structural configuration elastically in the wanted shape. Therefore the actuation system can be based on discrete actuators, like electrically driven motors using gearing systems to transform the displacement into the structure or on smart material configurations placed on the load bearing passive structure, deforming the structure within the elastic region into the wanted shape. Using smart materials within load-bearing structures, elastic and static strength properties vary between passive and active structures. Matching these properties is a great challenge for future structural configurations. This is a successful approach for certain applications, e.g. smart rotor blade. The availability of two-dimensional smart actuator configurations with distinct actuation orientation allows the definition of a distinct load bearing active structure. Therefore the so called of a spar-equivalent configuration was substituted by such a smart material actuator also known as macro fiber composite (MFC). Activating the web of the active cantilevered spar-configuration is resulting in a free end displacement. The main advantage lies in the fact that this approach will allow larger active displacements in comparison to a passive structural configuration with applied smart material actuators. Within the paper the process of developing the shear web based actuation system with configuration details will be illustrated and future steps will be proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.