Abstract
For a given bundle \(\xi :E \rightarrow M\) over a manifold, configuration-section spaces parametrise finite subsets \(z \subseteq M\) equipped with a section of \(\xi \) defined on \(M \smallsetminus z\), with prescribed “charge” in a neighbourhood of the points z. These spaces may be interpreted physically as spaces of fields that are permitted to be singular at finitely many points, with constrained behaviour near the singularities. As a special case, they include the Hurwitz spaces, which parametrise branched covering spaces of the 2-disc with specified deck transformation group. We prove that configuration-section spaces are homologically stable (with \(\mathbb {Z}\) coefficients) whenever the underlying manifold M is connected and has non-empty boundary and the charge is “small” in a certain sense. This has a partial intersection with the work on Hurwitz spaces of Ellenberg, Venkatesh and Westerland.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.