Abstract

The electronic properties of substitutional 3d transition-metal impurities in II-VI semiconductors have been studied using the cluster and Anderson impurity models with configuration interaction. It is shown that the photoemission and inverse-photoemission spectra, d-d optical-absorption spectra, exchange interaction between the 3d magnetic moment and the host band states, and donor and acceptor ionization energies can be reproduced with the same set of parameters, which show systematic variation with expected chemical trends. The importance of multiplet effects in the formation of donor and acceptor levels within the band gap is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.