Abstract
We developed the generalized tight-binding model to study the magneto-electronic properties of AAB-stacked trilayer graphene. Three groups of Landau levels (LLs) are characterized by the dominating subenvelope function on distinct sublattices. Each LL group could be further divided into two sub-groups in which the wavefunctions are, respectively, localized at 2/6 (5/6) and 4/6 (1/6) of the total length of the enlarged unit cell. The unoccupied conduction and the occupied valence LLs in each sub-group behave similarly. For the first group, there exist certain important differences between the two sub-groups, including the LL energy spacings, quantum numbers, spatial distributions of the LL wavefunctions, and the field-dependent energy spectra. The LL crossings and anticrossings occur frequently in each sub-group during the variation of field strengths, which thus leads to the very complex energy spectra and the seriously distorted wavefunctions. Also, the density of states (DOS) exhibits rich symmetric peak structures. The predicted results could be directly examined by experimental measurements. The magnetic quantization is quite different among the AAB-, AAA-, ABA-, and ABC-stacked configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.