Abstract

Intense global competition, dynamic product variations, and rapid technological developments force manufacturing systems to adapt and respond quickly to various changes in the market. Such responsiveness could be achieved through new paradigms such as Reconfigurable manufacturing systems (RMS). In this paper, the problem of configuration design for a scalable reconfigurable RMS that produces different products of a part family is addressed. In order to handle demand fluctuations of products throughout their lifecycles with minimum cost, RMS configurations must change as well. Two different approaches are developed for addressing the system configuration design in different periods. Both approaches make use of modular reconfigurable machine tools (RMTs), and adjust the production capacity of the system, with minimum cost, by adding/removing modules to/from specific RMTs. In the first approach, each production period is designed separately, while in the second approach, future information of products’ demands in all production periods is available in the beginning of system configuration design. Two new mixed integer linear programming (MILP) and integer linear programming (ILP) formulations are presented in the first and the second approaches respectively. The results of these approaches are compared with respect to many different aspects, such as total system design costs, unused capacity, and total number of reconfigurations. Analyses of the results show the superiority of both approaches in terms of exploitation and reconfiguration cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.