Abstract

In order to improve the obstacle-crossing ability, motion stability and load-bearing capacity of mobile robots for different terrains, the Rubik’s Cube mechanism (RCM) with strong coupling and variable topology is introduced into the field of mobile robots, and a wheel-legged mobile robot (WLMR) based on RCM is proposed. Aiming at the problems of the classical three-order RCM, such as small internal space, difficult processing and demanding precision, a new type of chute third-order RCM is designed, and its mechanical characteristics analysis and feasibility analysis are carried out. What’s more, a driving configuration analysis method is established according to different driving configuration relationships, and the configuration of WLMR is determined by the configuration stability analysis. Then, a WLMR with polymorphism is designed, and gait planning and gait stability analysis are conducted. Eventually, the co-simulation and prototype experiments are performed to verify the efficiency of the WLMR’s straight motion, in-situ rotation, obstacle-crossing and morphology transformation in complex environments. This research not only provides a reference for the design of polymorphous mobile robots, but also opens up ideas for the application of the RCM in daily production and life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call