Abstract
System software, especially operating systems, tends to be highly configurable. Like every complex piece of software, a considerable amount of bugs in the implementation has to be expected. In order to improve the general code quality, tools for static analysis provide means to check for source code defects without having to run actual test cases on real hardware. Still, for proper type checking a specific configuration is required so that all header include paths are available and all types are properly resolved. In order to find as many bugs as possible, usually a "full configuration" is used for the check. However, mainly because of alternative blocks in form of #else-blocks, a single configuration is insufficient to achieve full coverage. In this paper, we present a metric for configuration coverage (CC) and explain the challenges for (properly) calculating it. Furthermore, we present an efficient approach for determining a sufficiently small set of configurations that achieve (nearly) full coverage and evaluate it on a recent Linux kernel version.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.