Abstract

Coarse-grained reconfigurable architecture (CGRA) combines the performance of application-specific integrated circuits (ASICs) and the flexibility of general-purpose processors (GPPs), which is a promising solution for embedded systems. With the increasing complexity of reconfigurable resources (processing elements, routing cells, I/O blocks, etc.), the reconfiguration cost is becoming the performance bottleneck. The major reconfiguration cost comes from the frequent memory-read/write operations for transferring the configuration context from main memory to context buffer. To improve the overall performance, it is critical to reduce the amount of configuration context. In this paper, we propose a configuration context reduction method for CGRA. The proposed method exploits the structure correlation of computation tasks that are mapped onto CGRA and reduce the redundancies in configuration context. Experimental results show that the proposed method can averagely reduce the configuration context size up to 71% and speed up the execution up to 68%. The proposed method does not depend on any architectural feature and can be applied to CGRA with an arbitrary architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.