Abstract

The construction and operation of a low-cost plotter for fabrication of microarrays for multiplexed single-cell analyses is reported. The printing head consists of polymeric pyramidal pens mounted on a rotation stage installed on an aluminium frame. This construction enables printing of microarrays onto glass substrates mounted on a tilt stage, controlled by a Lab-View operated user interface. The plotter can be assembled by typical academic workshops from components of less than 15,000 Euro. The functionality of the instrument is demonstrated by printing DNA microarrays on the area of 0.5 cm2 using up to three different oligonucleotides. Typical feature sizes are 5 μm diameter with a pitch of 15 μm, leading to densities of up to 10(4)-10(5) spots/mm2. The fabricated DNA microarrays are used to produce sub-cellular scale arrays of bioactive epidermal growth factor peptides by means of DNA-directed immobilization. The suitability of these biochips for cell biological studies is demonstrated by specific recruitment, concentration, and activation of EGF receptors within the plasma membrane of adherent living cells. This work illustrates that the presented plotter gives access to bio-functionalized arrays usable for fundamental research in cell biology, such as the manipulation of signal pathways in living cells at subcellular resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.