Abstract
With GPS/Global Navigation Satellite System (GNSS) receivers exposed to greater levels of Radio Frequency Interference (RFI), a potential problem is the saturation of the receiver front end (FE). This problem is further complicated in typical multifrequency receivers by the interfrequency saturation effect. Specifically, any inband RFI targeted to induce FE saturation at only one specific GPS/GNSS frequency, if not properly handled, would potentially impact the reception of the other frequencies. This paper presents the design of an antenna module to detect, identify, and isolate potential RFI to prevent FE saturation including that due to the interfrequency effect. Analysis showed that any specific antenna module configuration with fixed internal components must sacrifice noise figure (NF) performance to increase robustness to RFI saturation, and vice versa. To provide a compact solution to this dilemma and the interfrequency saturation issue, two dynamically configurable antenna modules based on the concept of network topology were proposed for typical dual-frequency GPS/GNSS receivers. Such a solution can adapt to different RFI conditions by operating in corresponding modes resulting in a better NF versus robustness tradeoff. The proposed antenna-module design was validated by experiments with live GPS signals under controlled RFI conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.