Abstract
A reconstruction attack on a private dataset D takes as input some publicly accessible information about the dataset and produces a list of candidate elements of D. We introduce a class of data reconstruction attacks based on randomized methods for nonconvex optimization. We empirically demonstrate that our attacks can not only reconstruct full rows of D from aggregate query statistics Q(D)∈ℝm but can do so in a way that reliably ranks reconstructed rows by their odds of appearing in the private data, providing a signature that could be used for prioritizing reconstructed rows for further actions such as identity theft or hate crime. We also design a sequence of baselines for evaluating reconstruction attacks. Our attacks significantly outperform those that are based only on access to a public distribution or population from which the private dataset D was sampled, demonstrating that they are exploiting information in the aggregate statistics Q(D) and not simply the overall structure of the distribution. In other words, the queries Q(D) are permitting reconstruction of elements of this dataset, not the distribution from which D was drawn. These findings are established both on 2010 US decennial Census data and queries and Census-derived American Community Survey datasets. Taken together, our methods and experiments illustrate the risks in releasing numerically precise aggregate statistics of a large dataset and provide further motivation for the careful application of provably private techniques such as differential privacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the National Academy of Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.