Abstract

We consider the problem of estimating the mean of a distribution supported by the $k$-dimensional probability simplex in the setting where an $\varepsilon$ fraction of observations are subject to adversarial corruption. A simple particular example is the problem of estimating the distribution of a discrete random variable. Assuming that the discrete variable takes $k$ values, the unknown parameter $\boldsymbol{\theta}$ is a $k$-dimensional vector belonging to the probability simplex. We first describe various settings of contamination and discuss the relation between these settings. We then establish minimax rates when the quality of estimation is measured by the total-variation distance, the Hellinger distance, or the $\mathbb{L}^{2}$-distance between two probability measures. We also provide confidence regions for the unknown mean that shrink at the minimax rate. Our analysis reveals that the minimax rates associated to these three distances are all different, but they are all attained by the sample average. Furthermore, we show that the latter is adaptive to the possible sparsity of the unknown vector. Some numerical experiments illustrating our theoretical findings are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.