Abstract
In view of the economic importance of motor third-party liability insurance in developed countries the construction of optimal BMS has been given considerable interest. However, a major drawback in the construction of optimal BMS is that they fail to account for the variability on premium calculations which are treated as point estimates. The present study addresses this issue. Specifically, nonparametric mixtures of Poisson laws are used to construct an optimal BMS with a finite number of classes. The mixing distribution is estimated by nonparametric maximum likelihood (NPML). The main contribution of this paper is the use of the NPML estimator for the construction of confidence intervals for the premium rates derived by updating the posterior mean claim frequency. Furthermore, we advance one step further by improving the performance of the confidence intervals based on a bootstrap procedure where the estimated mixture is used for resampling. The construction of confidence intervals for the individual premiums based on the asymptotic maximum likelihood theory is beneficial for the insurance company as it can result in accurate and effective adjustments to the premium rating policies from a practical point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.