Abstract

Computing a confidence interval for a population correlation coefficient is very important for researchers as it gives an estimated range of values which is likely to include an unknown population correlation coefficient. This paper studied some confidence intervals for estimating the population correlation coefficient ρ by means of a Monte Carlo simulation study. Data are randomly generated from several bivariate distributions with a various values of sample sizes. Assessment measures such as coverage probability, mean width and standard deviation of the width are selected for performances evaluation. Two real life data are analyzed to demonstrate the application of the proposed confidence intervals. Based on our findings, some good confidence intervals for a population correlation coefficient are suggested for practitioners and applied researchers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.