Abstract
A good diagnostic test should show different behavior on both the positive and the negative populations. However, this is not enough for having a good classification system. The binary classification problem is a complex task, which implies to define decision criteria. The knowledge of the level of dissimilarity between the two involved distributions is not enough. We also have to know how to define those decision criteria. The length of the receiver-operating characteristic curve has been proposed as an index of the optimal discriminatory capacity of a biomarker. It is related not with the actual but with the optimal classification capacity of the considered diagnostic test. One particularity of this index is that its estimation should be based on parametric or smoothed models. We explore here the behavior of a kernel density estimator-based approximation for estimating the length of the receiver-operating characteristic curve. We prove the asymptotic distribution of the resulting statistic, propose a parametric bootstrap algorithm for confidence intervals construction, discuss the role that the bandwidth parameter plays in the quality of the provided estimations and, via Monte Carlo simulations, study its finite-sample behavior considering four different criteria for the bandwidth selection. The practical use of the length of the receiver-operating characteristic curve is illustrated through two real-world examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.