Abstract
Quantifying errors and losses due to the use of Floating-point (FP) calculations in industrial scientific computing codes is an important part of the Verification, Validation, and Uncertainty Quantification process. Stochastic Arithmetic is one way to model and estimate FP losses of accuracy, which scales well to large, industrial codes. It exists in different flavors, such as CESTAC or MCA, implemented in various tools such as CADNA, Verificarlo, or Verrou. These methodologies and tools are based on the idea that FP losses of accuracy can be modeled via randomness. Therefore, they share the same need to perform a statistical analysis of programs results to estimate the significance of the results. In this article, we propose a framework to perform a solid statistical analysis of Stochastic Arithmetic. This framework unifies all existing definitions of the number of significant digits (CESTAC and MCA), and also proposes a new quantity of interest: the number of digits contributing to the accuracy of the results. Sound confidence intervals are provided for all estimators, both in the case of normally distributed results, and in the general case. The use of this framework is demonstrated by two case studies of industrial codes: Europlexus and code_aster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.