Abstract

Confidence intervals for the pth-quantile Q of a two-parameter exponential distribution provide useful information on the plausible range of Q, and only inefficient equal-tail confidence intervals have been discussed in the statistical literature so far. In this article, the construction of the shortest possible confidence interval within a family of two-sided confidence intervals is addressed. This shortest confidence interval is always shorter, and can be substantially shorter, than the corresponding equal-tail confidence interval. Furthermore, the computational intensity of both methodologies is similar, and therefore it is advantageous to use the shortest confidence interval. It is shown how the results provided in this paper can apply to data obtained from progressive Type II censoring, with standard Type II censoring as a special case. The applications of more complex confidence interval constructions through acceptance set inversions that can employ prior information are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.