Abstract

A delta-lognormal distribution consists of zero and positive values. The positive values follow a lognormal distribution, which is an asymmetric distribution. It is well known that the logarithm of these values follows a normal distribution, which is a symmetric distribution. The delta-lognormal distribution is used in medical and environmental sciences. This study considers the challenges of constructing confidence intervals for the mean and difference between means of delta-lognormal distributions containing left-censored data and applies them to compare two daily rainfall average areas in Thailand. Three different approaches for constructing confidence intervals for the mean of the delta-lognormal distribution containing left-censored data, based on the generalized confidence interval approach, the Bayesian approach, and the parametric bootstrap approach, are developed. Moreover, four different approaches for constructing confidence intervals for the difference between means of delta-lognormal distributions containing left-censored data, based on the generalized confidence interval approach, the Bayesian approach, the parametric bootstrap approach, and the method of variance estimates recovery approach, are considered. The performance of the proposed confidence intervals is evaluated by Monte Carlo simulation. The simulation studies indicate that the Bayesian approach can be considered as an alternative to construct a credible interval for the mean of the delta-lognormal distribution containing left-censored data. Additionally, the generalized confidence interval and Bayesian approaches can be recommended as alternatives to estimate the confidence interval for the difference between means of delta-lognormal distributions containing left-censored data. All approaches are illustrated using the daily rainfall data from Chiang Mai and Lampang provinces in Thailand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.