Abstract
In this paper, we provide a theoretical discussion on estimating confidence interval of parameters in a multiresponse multipredictor semiparametric regression (MMSR) model for longitudinal data. The MMSR model consists of two components namely a parametric component and a nonparametric component. In consequently, estimating the MMSR model is equivalent to estimating the parametric and nonparametric components. Estimating the parametric component is equivalent to estimating parameters of the model, while estimating the nonparametric component is estimating unknown smooth function. In this paper, we estimate the parametric and nonparametric components using a weighted least square method and a smoothing technique namely truncated spline, respectively. Next, we estimate the confidence interval of parameters in the MMSR model using pivotal quantity and Lagrange multiplier functions. The results of this study can be applied to the Covid-19 data that is to model the case growth rate (CGR) and case fatality rate (CFR) of Covid-19 which are influenced by many variables including comorbid, age, gender, temperature, self-isolation, isolation in hospital, and others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Mathematical Biology and Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.