Abstract

The log-normal distribution (skewed distribution or asymmetry distribution) is used to describe random variables comprising positive real values. It is well known that the logarithm values of these are normally distributed (symmetry distribution). Positively right-skewed data applicable to the log-normal distribution are frequently observed in the fields of environmental studies, biology, and medicine. The number of zero observations follows a binomial distribution. However, problems can arise in the analysis of data containing zero observations along with log-normally distributed data, for which the delta-lognormal distribution is often referred to for using the analysis of the data. In statistics, the percentile provides the relative standing of a numerical data point when compared to all of the others in a distribution with reference to the observations at or below it. In this study, estimates for the confidence interval for the ratio of the percentiles of two delta-lognormal distributions are constructed using fiducial generalized confidence interval approaches based on the fiducial quantity and the optimal generalized fiducial quantity, the Bayesian approach, and the parametric bootstrap method. As assessed by Monte Carlo simulations using the RStudio programming in terms of the coverage probability and the average length, the Bayesian approach performed quite well by providing adequate coverage probabilities along with the shortest average lengths in all of the scenarios tested. Daily rainfall data contain both zero and positive values. The daily rainfall data can usually be fitted to the delta-lognormal distribution. Their application to rainfall data is also provided to illustrate their efficacies with real data. The efficacy of the approach is used to compare two rainfall dispersion populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.