Abstract

Abstract Epistemic uncertainties are included in probabilistic risk assessment (PRA) as second-order probabilities that represent the degrees of belief of the scientists that a model is correct. In this article, I propose an alternative approach that incorporates the scientist’s confidence in a probability set for a given quantity. First, I give some arguments against the use of precise probabilities to estimate scientific uncertainty in risk analysis. I then extend the “confidence approach” developed by Brian Hill and Richard Bradley to PRA. Finally, I claim that this approach represents model uncertainty better than the standard (Bayesian) model does.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.