Abstract
In this study, we present a method based on Monte Carlo Dropout (MCD)asBayesian neural network (BNN) approximationfor confidence-aware severity classification of lung diseases in COVID-19 patients using chest X-rays (CXRs). Trained and tested on 1208 CXRs from Hospital 1 in the USA, the model categorizes severity into four levels (i.e., normal, mild, moderate, and severe) based on lung consolidation and opacity. Severity labels, determined by the median consensus of five radiologists, serve as the reference standard. The model's performance is internally validated against evaluations from an additional radiologist and two residents that were excluded from the median. The performance of the model is further evaluated on additional internal and external datasets comprising 2200 CXRs from the same hospital and 1300 CXRs from Hospital 2 in South Korea. Themodel achieves an average area under the curve (AUC) of 0.94 ± 0.01 across all classes in the primary dataset, surpassing human readers in each severity class and achieves a higher Kendall correlation coefficient (KCC) of 0.80 ± 0.03. The performance of the model is consistent across varied datasets, highlighting its generalization. A key aspect of the model is its predictive uncertainty (PU), which is inversely related to the level of agreement among radiologists, particularly in mild and moderate cases. The study concludes that the model outperforms human readers in severity assessment and maintains consistent accuracy across diverse datasets. Its ability to provide confidence measures in predictions is pivotal for potential clinical use, underscoring the BNN's role in enhancing diagnostic precision in lung disease analysis through CXR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.