Abstract

The 2nd International Symposium on Lithium Applications for Fusion Devices (ISLA-2011) was held on 27–29 April 2011 at the Princeton Plasma Physics Laboratory (PPPL) with broad participation from the community working on aspects of lithium research for fusion energy development. This community is expanding rapidly in many areas including experiments in magnetic confinement devices and a variety of lithium test stands, theory and modeling and developing innovative approaches. Overall, 53 presentations were given representing 26 institutions from 10 countries. The latest experimental results from nine magnetic fusion devices were given in 24 presentations, from NSTX (PPPL, USA), LTX (PPPL, USA), FT-U (ENEA, Italy), T-11M (TRINITY, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), and RFX (Padova, Italy). Sessions were devoted to: I. Lithium in magnetic confinement experiments (facility overviews), II. Lithium in magnetic confinement experiments (topical issues), III. Special session on liquid lithium technology, IV. Lithium laboratory test stands, V. Lithium theory/modeling/comments, VI. Innovative lithium applications and VII. Panel discussion on lithium PFC viability in magnetic fusion reactors. There was notable participation from the fusion technology communities, including the IFE, IFMIF and TBM communities providing productive exchanges with the physics oriented magnetic confinement lithium research groups. It was agreed to continue future exchanges of ideas and data to help develop attractive liquid lithium solutions for very challenging magnetic fusion issues, such as development of a high heat flux steady-state divertor concept and acceptable plasma disruption mitigation techniques while improving plasma performance with lithium. The next workshop will be held at ENEA, Frascati, Italy in 2013.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.