Abstract
A vital part of the renewed hope for a vaccine against the human immunodeficiency virus (HIV-1) is based on recent studies that have highlighted major sites of HIV-1 vulnerability that could be effectively targeted by a preventive vaccine. One of these potential vulnerabilities includes the dense cluster of carbohydrates surrounding HIV-1's envelope glycoproteins gp120 and gp41, typically referred to as the "glycan shield." Recent data from several laboratories have shown that glycans on the HIV-1 envelope form key epitopes for broadly neutralizing antibodies (bNAb). Moreover, HIV-1 envelope glycans play an important role in viral transmission, antigenicity, and immunogenicity. The recent availability of novel tools and technologies has now allowed investigators to leverage glycomic structure-function relationships in the design of candidate HIV-1 vaccines. Additionally, glycans modulate the immune response, playing an essential role in Fc receptor and complement activity. To promote cross-disciplinary collaboration and promote synergistic HIV-1- glycomics research, the National Institutes of Health (NIH) cosponsored and convened a 1.5-day workshop entitled "Functional Glycomics in HIV-1 Vaccine Design." The meeting focused on the role of glycan interactions with neutralizing antibodies, the influence of immunoglobulin G (IgG) Fc receptor glycosylation, newly available glycomics technologies, and how new information on the role of glycans could be applied in HIV-1 immunogen design strategies. This report summarizes the discussions of this workshop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.