Abstract

In the confectionery coating industry, hard butters are frequently used as cocoa butter replacers. An electrohydrodynamic (EHD) system, which forms fine droplets with a relatively narrow size distribution, may be beneficial in confectionery coating to produce more even coverage. The objective of this study was to determine the effect of lecithin content and fat type on electrical resistivity and apparent viscosity, and the effect of these variables under EHD (25kV) and non-EHD coating on droplet size, width of coating area, thickness, and minimum flow rate to produce complete coverage. Total of 3 different types of fat were used: cocoa butter, cocoa butter equivalent, and lauric butter. As lecithin content increased, resistivity and apparent viscosity decreased, except all samples showed a local apparent viscosity minimum at 0.5% lecithin. EHD coating was more efficient than non-EHD as a smaller droplet size and thinner coating was formed. Due to repulsive forces between the like-charges on the droplets during EHD, it spread over wider areas which lead to a higher minimum flow rate to get complete coverage. Under EHD, increasing resistivity significantly increased the droplet size, but only at the highest resistivities. There was no correlation between resistivity and droplet size or width of coating under non-EHD. The width of coating under EHD decreased significantly as resistivity increased. Thickness and minimum flow rate to produce complete coverage, significantly correlated to resistivity, for EHD coating, and to apparent viscosity, for 2 of the 3 fat types during both EHD and non-EHD. Electrohydrodynamic (EHD) spraying offers great potential improvement to the food industry especially in the confectionery area. From the quality point of view, EHD offers greater and more complete coverage than non-EHD coating. From the economic point of view, lower cost can be achieved for coated food because during EHD, smaller droplet size and thinner coating is produced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call