Abstract

This work proposes a new tensor-based approach to solve the problem of blind identification of underdetermined mixtures of complex-valued sources exploiting the cumulant generating function (CGF) of the observations. We show that a collection of second-order derivatives of the CGF of the observations can be stored in a third-order tensor following a constrained factor (CONFAC) decomposition with known constrained structure. In order to increase the diversity, we combine three derivative types into an extended third-order CONFAC decomposition. A detailed uniqueness study of this decomposition is provided, from which easy-to-check sufficient conditions ensuring the essential uniqueness of the mixing matrix are obtained. From an algorithmic viewpoint, we develop a CONFAC-based enhanced line search (CONFAC-ELS) method to be used with an alternating least squares estimation procedure for accelerated convergence, and also analyze the numerical complexities of two CONFAC-based algorithms (namely, CONFAC-ALS and CONFAC-ELS) in comparison with the Levenberg-Marquardt (LM)-based algorithm recently derived to solve the same problem. Simulation results compare the proposed approach with some higher-order methods. Our results also corroborate the advantages of the CONFAC-based approach over the competing LM-based approach in terms of performance and computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.