Abstract
Cone-beam computed tomography (CBCT) and augmented fluoroscopy (AF), in which intraprocedural CBCT data is fused with fluoroscopy, have been utilized as a novel image-guidance technique for biopsy of peripheral pulmonary lesions. The aim of this clinical study is to determine the safety and diagnostic performance of CBCT-guided bronchoscopy with advanced software tools for procedural planning and navigational guidance with AF of the airways for biopsy of peripheral pulmonary nodules. Fifty-two consecutive subjects were prospectively enrolled in the AIRWAZE study (December 2018 to October 2019). Image-guided bronchoscopic biopsy procedures were performed under general anesthesia with specific ventilation protocols in a hybrid operating room equipped with a ceiling-mounted C-arm system. Procedural planning and image-guided bronchoscopy with CBCT and AF were performed using the Airwaze investigational device. A total of 58 pulmonary lesions with a median size of 19.0mm (range 7 to 48mm) were biopsied. The overall diagnostic yield at index procedure was 87.9% (95% CI: 77.1%-94.0%). No severe adverse events related to CBCT-guided bronchoscopy, such as pneumothorax, bleeding, or respiratory failure, were observed. CBCT-guided bronchoscopic biopsy with augmented fluoroscopic views of the airways and target lesion for navigational guidance is technically feasible and safe. Three-dimensional image-guided navigation biopsy is associated with high navigational success and a high diagnostic yield for peripheral pulmonary nodules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Bronchology & Interventional Pulmonology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.