Abstract

Studies of color vision in marsupial mammals have been very limited. Two photoreceptor genes have been characterized from the tammar wallaby, but a third cone pigment was suggested by microspectrophotometric measurements on cone photoreceptors in two other species, including the fat-tailed dunnart, Sminthopsis crassicaudata. To determine the sequence and infer absorption maxima of the cone photoreceptor pigments of S. crassicaudata and the related stripe-faced dunnart (Sminthopsis macroura), we have used evolutionarily conserved sequences of the cone pigments of other species, including the tammar wallaby, to design primers to amplify the S. macroura and S. crassicaudata pigment sequences by the polymerase chain reaction (PCR) using genomic DNA or retinal cDNA as a template. These primers will be useful for amplifying cone opsin coding sequences from a variety of vertebrates. Amplified products were directly sequenced to determine gene structure and coding sequences. The inferred amino acid sequences of the cone visual pigments indicated that both species have middle-wave-sensitive (MWS) pigments with a predicted absorption maximum (lambda(max)) at 530 nm, and ultraviolet-sensitive (UVS) pigments with a predicted lambda(max) at 360 nm. The MWS pigments of the two species differ by two, and UVS by three amino acid positions. No evidence was obtained for a third cone pigment in either species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call