Abstract

In this article we introduce the notion of a regular partition of a Coxeter group. We develop the theory of these partitions, and show that the class of regular partitions is essentially equivalent to the class of automata (not necessarily finite state) recognising the language of reduced words in the Coxeter group. As an application of this theory we prove that each cone type in a Coxeter group has a unique minimal length representative. This result can be seen as an analogue of Shi's classical result that each component of the Shi arrangement of an affine Coxeter group has a unique minimal length element. We further develop the theory of cone types in Coxeter groups by identifying the minimal set of roots required to express a cone type as an intersection of half-spaces. This set of boundary roots is closely related to the elementary inversion sets of Brink and Howlett, and also to the notion of the base of an inversion set introduced by Dyer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.