Abstract

This paper is devoted to the generalization of the theory of total positivity. We say that a linear operator A : R n → R n is generalized totally positive (GTP), if its jth exterior power ∧ j A preserves a proper cone K j ⊂ ∧ j R n for every j = 1 , … , n . We also define generalized strictly totally positive (GSTP) operators. We prove that the spectrum of a GSTP operator is positive and simple, moreover, its eigenvectors are localized in special sets. The existence of invariant cones of finite ranks is shown under some additional conditions. Some new insights and alternative proofs of the well-known results of Gantmacher and Krein describing the properties of TP and STP matrices are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.