Abstract
A function f is said to be cone superadditive if there exists a partition of R n into a family of polyhedral convex cones such that f(z + x) + f(z + y) ≤ f(z) + f(z + x + y) holds whenever x and y belong to the same cone in the family. This concept is useful in nonlinear integer programming in that, if the objective function is cone superadditive, the global minimality can be characterized by local optimality criterion involving Hilbert bases. This paper shows cone superadditivity of L-convex and M-convex functions with respect to conic partitions that are independent of particular functions. L-convex and M-convex functions in discrete variables (integer vectors) as well as in continuous variables (real vectors) are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.