Abstract
We show that the convex hull of the path of Brownian motion in $n$-dimensions, up to time $1$, is a smooth set. As a consequence we conclude that a Brownian motion in any dimension almost surely has no cone points for any cone whose dual cone is nontrivial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.