Abstract
A virtual calibration chamber was built using a three-dimensional model based on the discrete-element method. The chamber was then filled with a scaled granular equivalent of Ticino sand, the material properties of which were selected by curve-fitting triaxial tests. Cone penetration tests were then performed under different initial densities and isotropic stresses. Penetration resistance in the virtual calibration chamber was affected by the same cone/chamber size effect that affects physical calibration chambers and was corrected accordingly. The corrected cone resistance obtained from the virtual calibration chamber cone penetration tests shows good quantitative agreement with correlations that summarise previous physical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.