Abstract
As the definition of free class of differential modules over a commutative ring in [1], we define DG free class for semifree DG modules over an Adams connected DG algebra A. For any DG A-modules M, we define its cone length as the least DG free classes of all semifree resolutions of M. The cone length of a DG A-module plays a similar role as projective dimension of a module over a ring does in homological ring theory. The left (resp., right) global dimension of an Adams connected DG algebra A is defined as the supremum of the set of cone lengths of all DG A-modules (resp., A op -modules). It is proved that the definition is a generalization of that of graded algebras. Some relations between the global dimension of H(A) and the left (resp. right) global dimension of A are discovered. When A is homologically smooth, we prove that the left (right) global dimension of A is finite and the dimension of D(A) and D c (A) are not bigger than the DG free class of a minimal semifree resolution X of the DG A e -module A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.