Abstract

Although there is no universally accepted solution concept for decision problems with multiple noncommensurable objectives, one would agree that agood solution must not be dominated by the other feasible alternatives. Here, we propose a structure of domination over the objective space and explore the geometry of the set of all nondominated solutions. Two methods for locating the set of all nondominated solutions through ordinary mathematical programming are introduced. In order to achieve our main results, we have introduced the new concepts of cone convexity and cone extreme point, and we have explored their main properties. Some relevant results on polar cones and polyhedral cones are also derived. Throughout the paper, we also pay attention to an important special case of nondominated solutions, that is, Pareto-optimal solutions. The geometry of the set of all Pareto solutions and methods for locating it are also studied. At the end, we provide an example to show how we can locate the set of all nondominated solutions through a derived decomposition theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.