Abstract

Combustion performance for three types of wood–aluminum composites was investigated using cone calorimetry tests. The results revealed that time to ignition of the specimens was increased and more than 100 times after the lamination of 1.6-mm-thick aluminum alloy sheet on the surface (from 17 to 1990 s). And residual mass of the wood–aluminum composites was improved and almost quadrupled (from 21.795% to 81.664%). The peak heat release rate, average heat release rate, total heat release, and mean mass loss rate of wood–aluminum composites with 1.6-mm-thick aluminum alloy sheet on the surface were decreased to 70.18%, 48.71%, 24.27%, and 80.60%, respectively. However, yields of both CO and CO2are slightly improved with the increase in the thickness of aluminum alloy sheet because of incomplete combustion. The application of aluminum alloy sheets to the wood-based composites is an effective method for improving the combustion performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.