Abstract

A general formula for image reconstruction from cone beam data is described. Applying this formula to various cone beam geometries results in a class of filtered backprojection algorithms. This formula is known to lead to exact reconstructions in cases in which the cone vertices form certain unbounded curves. An example of such a curve is an infinite straight line. In the case where the curve is a circle, this formula leads to the well-known Feldkamp algorithm, for which the reconstructions are only approximations to the true image. The authors apply this general formula to the cases where the curve is an ellipse and a sprial, and new algorithms are derived. The properties of these algorithms are investigated through studies of the point spread function and reconstructions of computer generated phantom data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.