Abstract

BackgroundDetection of small peripheral lung nodules is constantly increasing with the development of low dose computed tomography lung cancer screening programs. A tissue diagnosis is often required to confirm malignity, with endobronchial biopsies being associated with a lower pneumothorax rate than percutaneous approaches. Endoscopic diagnosis of peripheral small size lung nodules is however often challenging using traditional bronchoscopy and endobronchial ultrasound alone. New virtual bronchoscopic navigation techniques such as electromagnetic navigational bronchoscopy (ENB) have developed to improve peripheral navigation, with diagnostic yield however remaining in the 30–50% range for small lesions. Recent studies have shown the benefits of combining Cone beam computed tomography (CBCT) with ENB to improve diagnostic yield to up to 83%. The use of ENB however remains limited by disposable cost, bronchus sign dependency and inaccuracies due to CT to body divergence.Case presentationThis case report highlights the feasibility and usefulness of CBCT-guided bronchoscopy for the sampling of lung nodules difficult to reach through traditional bronchoscopy because of nodule size and peripheral position. Procedure was scheduled in a mobile robotic hybrid operating room with patient under general anaesthesia. CBCT acquisition was performed to localize the target lesion and plan the best path to reach it into bronchial tree. A dedicated software was used to segment the lesion and the bronchial path which 3D outlines were automatically fused in real time on the fluoroscopic images to augment live guidance. Navigation to the lesion was guided with bronchoscopy and augmented fluoroscopy alone. Before the sampling, CBCT imaging was repeated to confirm the proper position of the instrument into the lesion. Four transbronchial needle aspirations (TBNA) were performed and the tissue analysis showed a primary lung adenocarcinoma.ConclusionsCBCT and augmented fluoroscopy technique is a safe and effective and has potential to improve early stage peripheral lesions endobronchial diagnostic yield without ENB. Additional studies are warranted to confirm its safety, efficacy and technical benefits, both for diagnosis of oncological and non-oncological disease and for endobronchial treatment of inoperable patients.

Highlights

  • Detection of small peripheral lung nodules is constantly increasing with the development of low dose computed tomography lung cancer screening programs

  • New interventional pulmonology technologies have been to obtain safe and effective tissue collection [8, 9] by improving navigation guidance through the bronchial pathway, device flexibility to reach lesions at tight angulation relative to the airway, and real time assessment of the relationship between the sampling device and the target lesion which can be even smaller than 1 cm

  • In modern interventional radiology and hybrid operating rooms, Cone beam computed tomography (CBCT)-based Three-dimensional space (3D) advanced procedural planning is fused on fluoroscopy to augment live guidance

Read more

Summary

Conclusions

Additional studies are warranted to confirm its safety, efficacy and technical benefits, both for diagnosis of oncological and non-oncological disease and for endobronchial treatment of inoperable patients

Findings
Background
Discussion and conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.