Abstract
ABSTRACTThis paper presents a novel numerical approach to simulate H-plane rectangular-waveguide microwave circuits considering a reduced quasi-2D simulation domain with benefits for computational cost and time. With the aim to evaluate the attenuation of the full height 3D component, we propose a modified expression for the waveguide top/bottom wall conductivity. Numerical 2D simulations are validated against results from full wave 3-D commercial electromagnetic simulator. After a benchmark on a simple straight waveguide model, the method has been successfully applied to an asymmetric un-balanced power splitter, where an accurate power loss prediction is mandatory. Simulation time and memory consumption can be reduced by a factor ten and seven respectively, in comparison with complete 3D geometries. Finally, we show that, also for quasi-2D E-bend waveguide, a case where the translational H-plane symmetry is broken, the error on conductor losses computation is mitigated by our approach since the method remains still valid in a first approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.