Abstract
Mercury ion (Hg2+) sensors based on graphene and gold nanoclusters are presented in this work. The sensors follow the structure of field-effect transistor (FET), and their sensing mechanism relies on the change in conductance of graphene and gold nanocluster percolating film. Each sensor was fabricated by deposition of interdigitated metal electrodes on the surface of graphene by thermal evaporation through a shadow mask. Next, gold nanoclusters are generated by magnetron discharge sputtering and inert-gas condensation inside an ultra-high compatible system, and they are self-assembled on the surface of graphene. The sensitivity and selectivity of graphene to Hg2+ are vastly enhanced by incorporating the nanoclusters on its surface. The detection limit of the present sensors is below the safe concentration of Hg2+ in drinking water set by different universal agencies. In addition, those sensors are practical and easy to operate in field for real life applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.