Abstract

We study electron transport properties of a monoatomic graphite layer (graphene) with different types of disorder at half filling. We show that the transport properties of the system depend strongly on the symmetry of disorder. We find that the localization is ineffective if the randomness preserves one of the chiral symmetries of the clean Hamiltonian or does not mix valleys. We obtain the exact value of minimal conductivity 4e 2 /πh in the case of chiral disorder. For long-range disorder (decoupled valleys), we derive the effective field theory. In the case of smooth random potential, it is a symplectic-class sigma-model including a topological term with 0 = π. As a consequence, the system is at a quantum critical point with a universal value of the conductivity of the order of e 2 /h. When the effective time reversal symmetry is broken, the symmetry class becomes unitary, and the conductivity acquires the value characteristic for the quantum Hall transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.