Abstract

A theory of conductivity is developed for metal-containing nanocomposites. An expression is obtained for the tunneling rate of an electron between nanoparticles. Three regimes of current flow are possible: the cases of weak, strong, and superstrong electric fields. In the weak-field regime, the electrons generated as a result of ionization of neutral nanoparticles are characterized by a nearly equilibrium distribution. The conductivity in this regime is calculated with the use of this nearly equilibrium distribution of electrons and the relationship between the spacing of neighboring particles and their radii. An expression is obtained for the electric conductivity as a function of temperature and a magnetic field (for ferromagnets) with regard to the distribution of nanoparticles with respect to radius and their volume density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.