Abstract
Abstract Due to a constant increase in demands for transparent electronic devices the search for alternative transparent conducting oxides (TCO) is a major field of research now. New materials should be low-cost and have comparable or better optical and electrical characteristics in comparison to ITO. The use of n-type ZnO was proposed many years ago, but until now the best n-type dopant and its optimal concentration is still under discussion. Ga was proposed as the best dopant for ZnO due to similar atomic radius of Ga3+ compared to Zn2+ and its lower reactivity with oxygen. The resistivity ρ of ZnO:Ga/Si (100) films grown by PEMOCVD was found to be 3×10−2 Ω cm. Rapid thermal annealing (RTA) was applied to increase the conductivity of ZnO:Ga (1 wt%) films and the optimal regime was determined to be 800 ∘C in oxygen media for 35 s. The resistivity ratio ρ before / ρ after before and after the annealing and the corresponding surface morphologies were investigated. The resistivity reduction ( ρ before / ρ after ≈ 80 ) was observed after annealing at optimal regime and the final film resistivity was approximately ≈4×10−4 Ω cm, due to effective Ga dopant activation. The route mean square roughness ( R q ) of the films was found to decrease with increasing annealing time and the grain size has been found to increase slightly for all annealed samples. These results allow us to prove that highly conductive ZnO films can be obtained by simple post-growth RTA in oxygen using only 1% of Ga precursor in the precursor mix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.