Abstract

Electric noise can be an important limitation for applications of conducting elements in the nanometer size range. The intrinsic electrical noise of prospective materials for opto-spintronics applications like ZnO has not yet been characterized. In this study, we have investigated the conductivity fluctuations in 10 nm thick current paths produced by proton implantation of ZnO microwires at room temperature. The voltage noise under a constant dc current bias in undoped, as well as in Li-doped microwires, is characterized by power spectra with . The noise intensity scales with the square of the bias current pointing to bias-independent resistivity fluctuations as a source of the observed noise. The normalized power spectral density appears inversely proportional to the number of carriers in the probed sample volume, in agreement with the phenomenological Hooge law. For the proton-implanted ZnO microwire and at 1 Hz we obtain a normalized power spectral density as low as Hz−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.