Abstract
Cuprous oxide (Cu2O) is a kind of low-cost and promising material for water splitting to produce hydrogen (p-type Cu2O) and oxygen (n-type Cu2O). However, the reason of conductivity transforming from p-type to n-type for Cu2O films during potentiostatic deposition is waiting to be revealed. In this work, a novel electrochemical technology, differential potentiostatic deposition (DPD), is developed by coupling a 3-electrode setup with a resistor connected in series with the counter electrode circuit through a potentiostat. By this approach, deposition current density is adjusted in a short period to simulate different stages in a traditional potentiostatic deposition (TPD). The result shows that semiconducting conductivity of Cu2O film changes from p-type to n-type with time during a long-term TPD in basic CuSO4 solution. Employing the DPD method, conductivity of Cu2O film transforms from p-type to n-type with current density decreasing. Through characterizing thickness, composition and photoelectrochemical performance of Cu2O films, the mechanism of semiconducting conductivity transformation for Cu2O films is proposed. Besides, the results indicate that the DPD is an effective method to tune the conductivity of metal oxide photoelectrodes for water splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.