Abstract
The North-South Seismic Belt of China is one of the most active seismic areas on the Chinese continent.  More than ten strong earthquakes (Ms > 6) have occurred in this region since 2010.  However, Earthquake-related conductivity anomalies are rarely reported for those earthquakes.  In this study, 3-component geomagnetic data recorded at sixty geomagnetic stations are selected to compute the Parkinson vectors to monitor the changes of conductivity before and after the earthquakes.  Considering most fluxgate magnetometers have only been installed since 2014, we concentrate on six Ms > 6 earthquakes occurred during 2014–2019.  To mitigate artificial disturbances, low noise data during the 00:00 – 5:00 LT are utilized.  We compute the background distribution and monitoring distribution using the azimuth of the Parkinson vectors at each station within six years (2014 – 2019) and a 15-day moving window, respectively.  The background distribution is subtracted from the monitoring distributions to mitigate the influences of underlying inhomogeneous tectonic structures.  The obtained difference distributions binned by 10° within 400 km from each station are superimposed during 60 days before and after the earthquake to construct integrated maps.  To analyze the potential frequency characteristics, we compute the results from low to high frequency band.  The results show that for four earthquakes, the conductivity anomalies areas appear near the epicenter 10 to 20 days before earthquakes, while the rest two earthquakes have no anomaly.  The conductivity anomalies appear at all study frequency band from 0.0005 Hz to 0.1 Hz, and significantly at 0.001 – 0.005 Hz before earthquakes.  Meanwhile, we find that the lower frequency band corresponds to larger anomalies area.  These results suggest the change of underlying conductivity near the hypocenter is a possible phenomenon for strong earthquakes, and the frequency characteristics of the seismo-conductivity anomaly during the earthquake are helpful to understand the pre-earthquake anomalous phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.