Abstract

The thermal decomposition of a linear perfluoropolyether peroxide produced perfluoropolyether radicals that covalently bonded the unsaturated moieties on the surface of carbon black and carbon cloth. Measurements of contact angles demonstrated that water droplets were enduringly stable on the treated materials and that contact angle values were significantly high, exceeding the superhydrophobicity threshold. On the contrary, the droplets were adsorbed in few seconds by the native materials. Conductivity measurements showed that the covalent linkage of fluorinated chains weakly modified the electrical properties of the conductive carbonaceous materials, even if the surface properties changed so deeply. The relationship between the linkage of fluorinated chains and the variations of physical-chemical properties were studied combining X-ray photoelectron spectroscopy, resistivity measurements, scanning electron microscopy and surface area analysis. The modified carbon cloth was also tested out as gas-diffusion layer in a fuel cell and preliminary results were recorded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.