Abstract

Nitrogen-enriched carbonaceous nanotubes (N-CTs) were prepared by the heat treatment of conducting polyaniline (PANI) nanotubes and then were used as new carbonaceous electrorheological (ER) fluids. Characterization showed that the nanotubular morphology of the original PANI was preserved after heat treatment, whereas the chemical structure and conductivity were changed significantly depending on the heat treatment temperatures. Under electric fields, the rheological properties of the N-CT suspensions prepared by the ultrasonic dispersion of the N-CTs in silicone oil were measured. This showed that the N-CT suspensions possessed versatile ER performance including high ER efficiency, good dispersion stability, and temperature stability. Especially, compared to the corresponding heat treated granular PANI suspensions, the N-CT suspensions showed better dispersion stability and higher ER effect. Furthermore, the ER effect of N-CT suspensions could be adjusted by varying heat treatment temperatures and the N-CTs obtained at around 600°C exhibited the maximum ER effect. This could be explained by the polarization response, which originated from the regular change of conductivity of N-CTs as a function of heat treatment temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.